
Chaotic computing

A Project Report

Submitted by

ADARSA.S AM107EC001

ARATHY.R.KUMAR AM107EC010

NAVYA.M.K AM107EC040

under the guidance

Of

Dr. NITHIN NAGARAJ

Br. KARTHI BALASUBRAMANIAN

in partial fulfillment for the award of the degree

of

BACHELOR OF TECHNOLOGY

IN

ELECTRONICS AND COMMUNICATION

ENGINEERING

At

Amrita School of Engineering

AMRITA VISHWA VIDYAPEETHAM

Amritapuri - 690 525

MAY 2011

Declaration

I hereby declare that the work presented in this thesis entitled, “Chaotic

computing” submitted for the B.Tech Degree is my original work and the project

has not formed the basis for the award of any degree, associateship, fellowship or

any other similar titles.

Signature of the Students: Place: Amritapuri,

Adarsa S Date:

Arathy R Kumar

Navya M K

In the name of God, dedicated to our parents and all Teach-

ers who inspire us to gain true knowledge and walk the path

of righteousness.

CONTENTS

LIST OF FIGURES . iii

LIST OF TABLES . v

ACKNOWLEDGMENT . vi

ABSTRACT . vii

1. INTRODUCTION TO CHAOS . 1

1.1 SENSITIVE DEPENDENCE ON INITIAL CONDITIONS 1

1.2 CHAOS-BUTTERFLY EFFECT-WEATHER PREDICTIONS 1

1.3 LOGISTIC MAP . 2

1.3.1 PERIODIC POINTS . 2

1.3.2 BIFURCATION DIAGRAM FOR LOGISTIC MAP 3

1.3.3 PERIOD DOUBLING PHENOMENON 4

1.3.4 INTERMITTENCY . 4

PROJECT OVERVIEW . 5

2. DYNAMIC EVOLUTION OF LOGIC FROM CHAOTIC ELE-
MENTS . 6

2.1 INTRODUCTION . 6

2.2 BASIC LOGIC OPERATIONS WITH A CHAOTIC MAP 7

2.3 GENERATION OF A SEQUENCE OF LOGIC OPERATIONS USING

ITERATES OF A CHAOTIC MAP . 8

2.3.1 CASE STUDY: LOGISTIC MAP f(x) = 4x(1− x) 8

2.3.1.1 MULTIPLE ITERATIONS 8

3. LITERATURE SURVEY VERIFICATION 12

4. MODULO ADDITION . 21

4.1 DETERMINING THE NECESSARY CONDITIONS 21

4.2 REDUCTION OF TABLE AND CHOOSING THE PARAMETERS . . . 22

4.3 CODING TO CHECK FOR PARAMETERS SATISFYING THE CON-

DITION . 23

4.4 REDUCTION OF PARAMETERS FOR COMPUTATIONAL EFFI-

CIENCY . 24

4.5 ANALYSIS . 24

i

5. USING SYNCHRONIZATION TO OBTAIN DYNAMIC LOGIC
GATES . 34

CONCLUSION . 43

FUTURE ENHANCEMENT . 45

LITERATURE CITED . 46

LIST OF FIGURES

1.1 Lorentz attractor [1] . 3

2.1 Three types of input/output configurations: (a) logical AND, OR, and
XOR; (b) logical NOT; (c) bit-by-bit arithmetic addition [2] 10

2.2 Schematic diagram of the nonlinear evolution based logic operations [3] 10

2.3 Graphical iteration representation of the logistic map 10

2.4 Necessary and sufficient conditions to be satisfied by a chaotic element [4] 11

2.5 Template showing different logic patterns [4] 11

3.1 Bifurcation . 12

3.2 Lorenz attractor . 13

3.3 Multigate without tolerance for logistic map 14

3.4 Multigate with tolerance for logistic map 15

3.5 3D for logistic map . 16

3.6 Tent map . 17

3.7 Multigate without tolerance for tent map 17

3.8 Multigate with tolerance for tent map 18

3.9 Multiple iteration for logistic map . 19

3.10 Multiple iteration for tent map . 20

4.1 Analysis figure 1 . 25

4.2 Analysis figure 2 . 25

4.3 Modified piecewise linear map . 26

4.4 Result figure . 26

4.5 Result figure . 27

4.6 Graphically obtained solutions . 27

4.7 Implementation of AND gate using modified piecewise linear map . . . 30

iii

4.8 Implementation of OR gate using modified piecewise linear map 30

4.9 Implementation of NAND gate using modified piecewise linear map . . 31

4.10 Implementation of NOR gate using modified piecewise linear map . . . 31

4.11 Implementation of XOR gate using modified piecewise linear map . . . 32

4.12 Implementation of XNOR gate using modified piecewise linear map . . 32

4.13 Implementation of NOT gate using modified piecewise linear map . . . 33

5.1 Synchronization using logic gates [5] . 35

5.2 Chua circuit [5] . 35

5.3 Parameter setting of drive system yielding output of operation for six
logic gates [5] . 36

5.4 Result figure . 37

5.5 Result figure . 38

5.6 Result figure . 39

5.7 Result figure . 40

5.8 Result figure . 41

5.9 Result figure . 42

LIST OF TABLES

2.1 Necessary and sufficient conditions to be satisfied by the chaotic element
to implement each of the logical operations [2] 7

2.2 Single iteration of f(x)[2] . 8

4.1 Truth table for 3-inputs . 22

4.2 Truth table for 2-inputs . 23

4.3 Necessary and sufficient conditions for modulo addition 23

4.4 Possible values of T1 . 28

4.5 Necessary and sufficient conditions to be satisfied by the chaotic element
to implement each of the logical operations [6] 29

4.6 The values of initial condition, threshold and delta for the implementa-
tion of logic gates using modified piecewise linear map 29

v

ACKNOWLEDGMENT

Our humble pranams at the lotus feet of Amma, Satguru Mata Amritanandamayi

Devi, our guiding force and inspiration.

We would like to express our deepest gratitude to Dr. K Sankaran, Principal, Am-

rita School of Engineering, Amritapuri Campus, for providing necessary facilities

and an ideal environment to carry out this work.

We are highly grateful to Dr. Sundararaman Gopalan, Chairperson, Department of

Electronics and Communication for his valuable support.

We are thankful to Mrs. Poorna.S.S, Ms. Parvathy Nair and Mrs. Sreedevi.K.Menon,

Project Coordinators, for their suggestions and willingness to help.

We avail this opportunity to express our sincere gratitude to our teachers Br. Karthi

Balasubramanian, Assistant Professor and Dr. Nithin Nagaraj, Assistant Professor

for their guidance, advice and encouragement at every step of this endeavor.

We extend our profound thanks to all the faculty members of our department for

the technical know-how provided to us which greatly helped us in accomplishing the

work successfully.

We are greatly indebted to our parents and friends for their wholehearted support

and prayers which made it possible for us to successfully complete this project in

time. Above all we are always thankful to God Almighty for giving us good health

and mental strength for completing the project.

vi

ABSTRACT

In our project, our endeavour is to implement fundamental computing functions by

using chaotic elements. This would provide a theoretical foundation of computer

architecture based on a totally new principle other than silicon chips. The fun-

damental functions discussed are: the logical AND, OR, NOT, XOR, and NAND

operations (gates) and modulo arithmetic operation. The chaotic elements employed

in the implementation were logistic map (nonlinear), tent map (symmetric piecewise

linear) and a newly introduced modified piecewise linear map.

Dynamical evolution of logic can be obtained either by thresholding or by

synchronization between two maps. Initially we studied the implementation of basic

logic gates, half adder and subtractor using the concept of threshold. Our research

then delves into design of modulo arithmetic logic. Having understood the inability

to implement modulo arithmetic using logistic and tent map, it has been successfully

implemented using modified piecewise linear map. Later we studied the concept of

synchronization between two maps and implemented logic gates using it. Hence

the research would provide a firm ground to build other modulo arithmetic and

computer operations.

vii

CHAPTER 1

INTRODUCTION TO CHAOS

Chaos is the phenomenon of occurrence of bounded non periodic evolution in com-

pletely deterministic nonlinear dynamical systems with high sensitive dependence

on initial conditions. This is called deterministic chaos since governing equations

are deterministic.

For a system to be chaotic, it should have sensitive dependence on initial condi-

tions. It has aperiodic orbit. Though it seems to be random, system is actually

deterministic. The rate of separation of nearby trajectories is positive.

1.1 SENSITIVE DEPENDENCE ON INITIAL CONDITIONS

Let f be a map on R. A pt x0 has sensitive dependence on initial conditions if there

is a non-zero distance ’d’ such that some points arbitrarily near x0 are eventually

mapped at least d units from the corresponding image of x0. More precisely, there

exists d > 0 such that any neighbourhood ϵ of x0 contains a point x such that

|f ′
k − f ′

k(x0)| ≥ d for some non-negative integer k. Sometimes we will call such a

point x0 a sensitive point [1].

1.2 CHAOS-BUTTERFLY EFFECT-WEATHER PREDICTIONS

The sensitive dependence of chaotic solution on initial conditions was first observed

by E.N.Lorentz in a system of three coupled first order ordinary differential equations

describing hydrodynamic flow now popularly known as Lorentz system. When the

notion of sensitive dependence of chaotic system was applied to atmosphere, which

is expectedly non periodic, it indicates that prediction of a sufficiently distant future

is impossible by any method, unless the present conditions as well as subsequent

evolutions are known exactly. In view of the inevitable inaccuracy and incomplete-

ness of weather observations, precise and very long range forecasting would seem

to be nonexistent-that is, even a minute perturbation can cause realizable effects in

1

2

a finite time under chaotic evolution. To describe the dramatic extreme sensitive

dependence of chaotic solution, Lorentz coined the term butterfly effect. ”As small

a perturbation as a butterfly fluttering its wings somewhere in the Amazons can in

a few days time grow into a tornado in Texas”. That is even a minute perturbation

can cause realizable effects in a finite time under chaotic evolution.

Equilibrium conditions: Equilibrium(0,0,0) exists for all r, and for r < 1 its a

stable attractor. The origin corresponds to fluid at rest with a linear temperature

profile - hot at bottom and cool at top. Two new equilibria exist for r ≥ 1, C+ =

(
√

b(r − 1),
√
b(r − 1), r − 1) C− = (

√
b(r − 1),−

√
b(r − 1), r − 1) representing

steady convective circulation(clockwise or anticlockwise flow). This pair of equilibria

branch off from origin at r = 1 and move away as r is increased. For r ≥ 1, origin

is unstable with two equilibria representing convective rolls, C+ and C− are stable

at their birth r = 1 and remain stable.

1.3 LOGISTIC MAP

A function whose domain(input) space and range(output) space are the same will

be called a map. Let x be a point and let f be a map. The orbit of x under f is a

set of points x, f(x), f
2
(x), The starting point x for the orbit is called the initial

value of the orbit. A point p is a fixed point of the map f if f(p) = p. Let f be a map

on R and let p be a real number such that f(p) = p. If all the points sufficiently

close to p are attracted to p, then p is called a sink or an attracting fixed point. If

all the points sufficiently close to p are repelled from p, then p is called a source or

repelling fixed point [1].

1.3.1 PERIODIC POINTS

Let f be a map on R. We call ’p’ a periodic point of period k if f ′
k(p) = p, and if k is

the smallest such positive integer. The orbit with initial point p (which consist of k

points) is called periodic orbit of period k. Let f be a map and assume that p is a

periodic k point. The periodic k orbit of p is a periodic sink if p is a sink for the map

f ′
k. The orbit of p is a periodic source if p is a source for the map f ′

k. The periodic

orbit is a sink if |f ′(pk),, f
′(p1)| < 1 and is a source if |f ′(pk),, f

′(p1)| > 1 [1].

3

Figure 1.1: Lorentz attractor [1]

1.3.2 BIFURCATION DIAGRAM FOR LOGISTIC MAP

In bifurcation diagram, at a = 3.4, a vertical line intersects the diagram in two points

of a periodic sink. For ’a’ slightly larger, there appears to a periodic 4 sinks. There

is an entire sequence of periodic sinks, one for each period 2n, n=1,2,3,....Such a

4

sequence is called period doubling cascade. A bifurcation diagram: shows the birth,

evolution, and death of attracting sets bifurcation diagram for f(x) = ax(1− x).

1.3.3 PERIOD DOUBLING PHENOMENON

Period-1 solution x∗ = (a−1)/a is unstable for a > 3. Since slope crosses f
′
= −1 at

a = 3(period-2 born). Period-2 solution becomes unstable at a = 1+
√
6. Therefore,

f
′
(x∗

1)f
′(x∗

2) = −1 at a = 1 +
√
6 Similarly, period 4 cycle is unstable at condition

where f
′
(x∗

1)f
′(x∗

2)f
′
(x∗

3)f
′(x∗

4) becomes =-1 When the stability determining quan-

tity of a period k solution becomes -1, a bifurcation occurs giving birth to a stable

period 2k solution. Such bifurcations associated with stability determining quantity

crossing value = -1 is called flip bifurcation(period doubling or subharmonic bifur-

cation). Period 4 cycle exist for 1 +
√
6 < a < 3.544112 and this solution bifurcates

into period 8 cycle solution at a = ac = 3.544112 and process proceeds further to

infinity. The successive bifurcations occurs faster and faster as a is increased. Ulti-

mately an converges to a limiting value ac = 3.57. This convergence is essentially

geometric in the limit of large n, the distance between successive transitions shrinks

by a constant factor or universal constant d, the so called Feigenbaum’s universal

number or Feigenbaum’s constant. An important characteristic properties of the

solutions of logistic map for a < ac(where only periodic solution occur) is that they

are insensitive to initial values of x provided 0 < x < 1.

1.3.4 INTERMITTENCY

For a period-3 window, system exhibits an interesting kind of chaos. The orbit

returns to the ghostly 3 cycle repeatedly, with intermittent bouts of chaos between

visits near saddle node bifurcation. This phenomenon is called intermittency. In-

termittency repeats as nearby motion interrupted by occasional irregular bursts.

The time between bursts is like a random variable. As the parameter is moved far-

ther away from periodic window, the burst become more frequent until the system

becomes fully chaotic. This progression is called intermittency route to chaos.

PROJECT OVERVIEW

5

CHAPTER 2

DYNAMIC EVOLUTION OF LOGIC FROM CHAOTIC

ELEMENTS

2.1 INTRODUCTION

Chaos is all around us and found in many disciplines, such as physics, chemistry,

biology, medicine, and engineering. For example,chaotic phenomena are found in

lasers, electronic circuits, chemical systems, brains and hearts. Many researchers

have worked in the field because of both theoretical and practical importance of the

subject, and challenging and fascinating features of extreme nonlinearity. Chaos

represents a deterministic dynamical system that is nonlinear, sensitive to initial

conditions (the so-called butterfly effect), and exhibits sustained irregularity.

A small change in the initial condition can yield a significantly different sequence

of random numbers. A recurring theme of research into chaotic systems over the

last decade has been that chaos provides flexibility in the performance of natural

systems and provides such systems with a rich variety of behaviors that can be uti-

lized for improved performance. Successful implementations of this concept have

included the exploitation of chaotic behavior for control, synchronization, encoding

information and communications.

Here we present an analysis for implementing a complete set of logical gates with two

inputs and one output, realized by 1-D (one-dimensional) chaotic (or very nonlinear

system) element. We present the basic concepts underlying chaos computing and

describe methods to design nonlinear systems to flexibly yield all fundamental logic

functions by ”programming” different dynamical systems. The patterns produced by

varying the initial conditions and the parameters of a chaotic system, as well as the

patterns produced by its time evolution, are amenable to performing computation.

By combining both techniques, one can produce a computational device of immense

power and elegance.

6

7

2.2 BASIC LOGIC OPERATIONS WITH A CHAOTIC MAP

Consider a single chaotic element whose state is represented by a value x, as our

chaotic chip or chaotic processor. The state of the element evolves according to

some dynamical rule exhibiting chaos. For instance, the updates of the state of the

element from time n to n + 1 may be well described by a map, i.e., xn+1 = f(xn)

where f is a nonlinear function chosen to obtain chaotic dynamics. Now this element

receives two inputs (for AND, OR, and XOR) or one input (in case of NOT) and

outputs a signal.

Refer Fig 2.1. Analysis steps include:

1. Initialisation of state x of system and addition of external inputs. x=

xo+ x1 + x2.

2.Chaotic update, x = f(x),where f(x) is a chaotic function.

3.Threshold mechanism to obtain output z.

z = 0, if f(x) ≤ x∗ ;

z = δ = f(x)−x∗ if f(x) > x∗, where x* is called the threshold value of the system.

Refer Fig 2.2.

Operation AND OR XOR

Conditions f(x0) ≤ x∗ f(x0) ≤ x∗ f(x0) ≤ x∗

f(x0 + δ) ≤ x∗ f(x0 + δ)− x∗ = δ f(x0 + δ)− x∗ = δ

f(x0 + 2δ)− x∗ = δ f(x0 + 2δ)− x∗ = δ f(x0 + 2δ) ≤ x∗

Operation NAND NOT
Conditions f(x0) = δ f(x)− x∗ = δ

f(x0 + δ)− x∗ = δ f(x0 + δ) ≤ x∗

f(x0 + 2δ) ≤ x∗ f(x0 + δ)− x∗ = δ

Table 2.1: Necessary and sufficient conditions to be satisfied by the
chaotic element to implement each of the logical operations

We demand δ to be a common positive constant for all the operations so that an

output from one gate can directly be fed into another gate as input. On the other

hand, x0 and x∗ differ among the operations, although the same symbols are used

for simplicity.

8

Typically, we may start selecting function f(x). This may be determined by charac-

teristics of a physical device for actual implementation. Given a specific function,

we may search for solutions in terms of δ, since this must be a constant throughout

all the operations. We determine a pair of (x0, x
∗) for each of the operations consis-

tent with δ, where δ may have to be chosen appropriately so that solutions for all

operations exist. We note that our computing scheme under many chaotic systems

will be robust for background noise.

2.3 GENERATION OF A SEQUENCE OF LOGIC OPERATIONS US-

ING ITERATES OF A CHAOTIC MAP

2.3.1 CASE STUDY: LOGISTIC MAP f(x) = 4x(1− x)

We select the constant δ, common to both input and output and all logic gates, to

be 1/4.

operation AND OR XOR NAND NOT
x0 0 1/8 1/4 3/8 1/2
x∗ 3/4 11/16 3/4 11/16 3/4

Table 2.2: Single iteration of f(x)[2]

For AND operation, for example, selecting x0 = 0 and x∗ = 3/4 suffices the three

conditions given in Table I as follows:

f(x0) = f(0) = 0 < 3/4 = x∗

f(x0 + δ) = f(1/4) = 3/4 ≤ x∗

f(x0 + 2δ)− x∗ = f(1/2)− 3/4 = 1− 3/4 = 1/4 = δ

2.3.1.1 MULTIPLE ITERATIONS

The constant δ, common to all logical gates, is fixed as 0.25. The inequali-

ties(necessary and sufficient conditions) have many possible solutions based on the

size of δ. For example, by setting δ= 0.25, we can simulate the equation for the

different time shifts that each gate requires. Thus the inputs setup the initial state

x0 + I1 + I2. Then the system evolves over n iterative time steps to an updated

state xn. The evolved state is compared to a monitoring threshold x∗ at every n.

9

If the state at iteration n, is greater than x∗ a logical 1 is the output and if the

state is less than or equal to x∗ a logical 0 is the output. This process is repeated

for subsequent iterations. Relating inputs with the obtained outputs provides us

the operation that is performed at a specific iteration. For illustrative purposes,

Graphical iteration representation of the logistic map with three logic initial Inputs

(a)x = x0, (b)x = x0 + δ and (c)x = x0 + 2δ corresponding to Table is shown. Here

x∗ = 0.75 is used to recover logic operations NAND, AND, NOR and XOR. For OR

logic operation x∗ = 0.4 is utilized. Various initial values corresponding to different

logic inputs is depicted in Fig. 2.2. The initial values are denoted by labels a, b and

c. For clarity, the state of xn For first 5 iterations (0 < n < 5) can be identified from

this diagram. It is interesting to note that first 5 iterations satisfy the realization of

basic logic gates as indicated in Table 1. In addition, subsequent iterations beyond

n > 5 continue to yield different logic gate operations including XNOR operation.

A more exclusive template of various logic responses being admitted by this system

(Eq. (1)) for different iterations n versus range of x0 values is depicted in Fig. 2.3.

To generate this template, the representative value of δ is fixed as 0.25. The value

x∗ = 0.75 is used for 1 ≤ n ≤ 4 and x∗ = 0.4 is used for n > 4. Fig 2.3 shows the

logic behavior arising from a system with initial state x0 evolving over n iterative

steps, with n = 1, 2, . . . , 10. It is clear from this figure, that while the system

will always yield some logic behavior, the robustness of the response, with respect

to initial state specification is lost after n around 5 or so. This is expected from

the chaotic nature of the dynamics, and so for large n the response is extremely

sensitive to the precision with which x0 is set. However note that one need not go

to iterates beyond 5 or so, as all basic logic outputs can be obtained within the first

few iterates, in large robust ranges of initial state x0. After n around 5 or so, the

system can be re-set, for instance by the threshold controller mentioned earlier, and

the nonlinear system can be ’re-used’ after this re-initialization.

Refer Fig 2.3,Fig 2.4 and Fig 2.5.

10

Figure 2.1: Three types of input/output configurations: (a) logical AND,
OR, and XOR; (b) logical NOT; (c) bit-by-bit arithmetic addition [2]

Figure 2.2: Schematic diagram of the nonlinear evolution based logic
operations [3]

Figure 2.3: Graphical iteration representation of the logistic map

11

Figure 2.4: Necessary and sufficient conditions to be satisfied by a chaotic
element [4]

Figure 2.5: Template showing different logic patterns [4]

CHAPTER 3

LITERATURE SURVEY VERIFICATION

The first step in analysing logistic map was to obtain the bifurcation diagram by

varying ’a’ from 0 to 4. This was done using Matlab and the following figure was

obtained. We can see that fixed points that exist for small values of a gives way

to a period 2 orbit at the bifurcation point, ’a’=3 which in turn leads to more and

more complicated orbits for larger values of ’a’. Notice that fixed point is plotted

only while it is a sink.

Figure 3.1: Bifurcation

We can see onset of period 3 for value of ’a’ greater than 3.8 leading to chaos. Also

12

13

the self similarity nature of the map may be observed. The other system studied for

understanding chaos, the Lorentz attractor was implemented next and the following

figure was obtained. The parameters were fixed as σ = 10, b=8/3 and r was varied

around 24 which is considered as the traditional value for chaos. During this the

transient chaos was observed. One can see the two stable points around which the

symmetric figure is obtained.

Figure 3.2: Lorenz attractor

The non-periodic nature and sensitive dependence on initial condition, the inherent

property of chaos, can be observed evidently in this case. Hence it provided a good

idea about chaos and its nature.

The method of chaotic computing proposes that we can directly implement the most

fundamental computer functions(basic logic operations AND, OR, NOT, XOR and

NAND, bit by bit arithmetic operations such as addition) using chaotic element.

Once the systems were obtained, our motive was to search for logic gates amidst

chaos. We have seen that at a=4, the logistic map exhibits chaos. Hence we chose

this region to implement possible logic gates. There were three variables to be fixed

namely initial condition, delta and threshold(refer chapter 2). Initially we tried

14

fixing each parameter one by one. From background study [7], it was noted that

by fixing delta as 0.25 and varying the other two parameters, it was possible to

implement five logic gates. Thus at delta=0.25 the following gates were obtained.

Each gate is represented here using different colours namely red for AND, cyan for

OR, blue for NAND, magenta for NOR, green for XOR, yellow for XNOR. It must

be noted that since the gates, OR and NAND are obtained at threshold 0.6875, it

is not possible to obtain them during a sweep from zero to one with a precision of

0.001. It was separately obtained by taking interval length of 0.6875.

Figure 3.3: Multigate without tolerance for logistic map

Similarly, we tried plotting different logic gates at different values of threshold,

delta and initial conditions. The unpredictable nature of chaos surely presented

some stunning results!

Considering the implementation of the above mentioned logic gates in hardware it

becomes important to introduce a limit of tolerance. It is highlighted by the property

of sensitive dependence on initial condition of the system. We used a range of

15

tolerance on the value of delta i.e, instead of the condition |f(x)−threshold| = delta,

a small deviation of |f(x) − threshold − delta| <= tolerance was introduced. As

expected, it could be observed that as tolerance increases, the number of feasible

points also increased.

Figure 3.4: Multigate with tolerance for logistic map

Having obtained possible values by fixing one of the parameters, we moved on to

varying all the three parameters over a range of zero to one each in the 3-D plane.

Thus the figure shown in the next page was obtained.

16

Figure 3.5: 3D for logistic map

It may be noted at this point that it is impossible to find points satisfying conditions

for XNOR gate within our limits of computation. But we were delighted to find

points corresponding to NAND and OR, though few, within our ranges. Since our

real motive is the implementation of a two bit adder, we needed a choice of more

than one chaotic system so that we could choose the most efficient one for our

implementation. Hence our choice was the one very similiar to logistic map defined

by the equation:

f(x) = 2x, 0 <= x <= 1/2

f(x) = 2(1− x), 1/2 <= x <= 1

For the tent map for fixed values of delta, the initial conditions and thresholds were

varied to search for possible gates. At delta=0.5, the following gates were obtained.

Each gate is represented here using different colours namely red for AND, cyan for

OR, blue for NAND, magenta for NOR, green for XOR, yellow for XNOR.

17

Figure 3.6: Tent map

Figure 3.7: Multigate without tolerance for tent map

18

Interestingly, it may be noted that for the tent map, we are able to obtain OR and

NAND gates directly while NOR gate seems to be missing. Even though XNOR is

missing in all the cases, these results have made the analysis worthwhile. As done

in the case of logistic map, further on we introduced different values of tolerance.

The similarities in the results may be accredited to the similarities between the

map namely (1)both have a fixed point to the right of critical point.(2)each has a

single period 2 orbit. It could be said that for each point x in the tent map domain

[0,1], there is a specified companion point C(x) in the logistic map domain [0,1] that

imitates its dynamics exactly [1].

Figure 3.8: Multigate with tolerance for tent map

19

Until now, the comparison was done using single iteration i.e, each input was iter-

ated in the function once. In the Fig 2.3, one can note that this corresponds to a

single interpolation to the line y=x. In the multiple iteration technique, we carry

on this interpolation further. From Fig 2.5 [3], one can observe different gates that

can be implemented in different iterations of the logistic map. This method has

the advantage that one can simply fix all the three parameters namely initial con-

dition, delta and threshold and still obtain different gates by simply iterating the

map. For instance, at around x0 = 0.34 in five iterations, one obtains five differ-

ent gates. Hence, this acts as multiple sequentially connected nonlinear maps with

single iteration thus being a prospective candidate for implementation of bit-by-bit

arithmetic addition. Using Matlab, we varied the initial condition over a range 0 to

0.5 fixing delta as 0.25 and threshold at 0.75 for iterations from one to four and 0.4

for iterations above four in the logistic map and we obtained a result as proposed

in the reference [4]. The same was worked out for the tent map(introduced earlier).

Fixing the threshold as 0.5 and delta as 0.25, we obtained logic gates till the second

iteration.

Figure 3.9: Multiple iteration for logistic map

20

Figure 3.10: Multiple iteration for tent map

It may be noted here that for the first iteration, the pattern of gates is exactly

similiar to that of logistic map. Having studied both the maps, with this idea, we

moved on to studying and implementing modulo arithmetic which is discussed in

the following chapter.

CHAPTER 4

MODULO ADDITION

The aim of research so far was to be able to implement a logic for modulo arith-

metic. In our project, we implemented mod 3 addition. This is extendable directly

to subtraction. It was observed that logics of higher mod becomes more complex

and presents a wide area of study.

A mod n adder accepts inputs from 0 to n-1. The addition is performed and mod n

operation is done on it. In the coming sections, we moved to implementing bit-by-

bit addition which in terms of hardware is analogous to a half adder. This would in

effect give two outputs, a sum and a carry. Hence, a chaotic system would need to

satisfy all the conditions imposed simultaneously by sum and carry on the inputs.

The implementation was carried out through the following steps:

1. Determining the necessary conditions

2. Reduction of table and choosing the parameters

3. Coding to check for parameters satisfying the condition

4. Reduction of parameters for computational efficiency

5. Analysis

4.1 DETERMINING THE NECESSARY CONDITIONS

The first system studied was a mod 3 full adder. It accepts 3 inputs which may be

0, 1 or 2 and outputs, a sum and carry which again may be 0, 1 or 2. This would

involve 27 set of necessary conditions each for sum and carry. A simpler adder can

have only 2 inputs, thus 9 sets of necessary conditions.

21

22

INPUT1 INPUT2 INPUT3 SUM CARRY
0 0 0 0 0
0 0 1 1 0
0 0 2 2 0
0 1 0 1 0
0 1 1 2 0
0 1 2 0 1
0 2 0 2 0
0 2 1 0 1
0 2 2 1 1
1 0 0 1 0
1 0 1 2 0
1 0 2 0 1
1 1 0 2 0
1 1 1 0 1
1 1 2 1 1
1 2 0 0 1
1 2 1 1 1
1 2 2 2 1
2 0 0 2 0
1 1 1 0 1
1 1 2 1 1
1 2 0 0 1
1 2 1 1 1
1 2 2 2 1
2 0 0 2 0
2 0 1 0 1
2 0 2 1 1
2 1 0 0 1
2 1 1 1 1
2 1 2 2 1
2 2 0 1 1
2 2 1 2 1
2 2 2 0 2

Table 4.1: Truth table for 3-inputs

4.2 REDUCTION OF TABLE AND CHOOSING THE PARAMETERS

For simplicity and ease of computation, we consider the condition for sum alone.

Since inputs 0, 1 and 1,0 are inherently the same, we can reduce the conditions

further to six conditions. Let x0 be the initial condition and 0 correspond to input

23

INPUT1 INPUT2 SUM CARRY
0 0 0 0
0 1 1 0
0 2 2 0
1 0 1 0
1 1 2 0
1 2 0 1
2 0 2 0
2 1 0 1
2 2 1 1

Table 4.2: Truth table for 2-inputs

0, delta1 to 1 and delta2 correspond to 2. Let TS1 and TS2 be two thresholds to

distinguish between three possible values of outputs such that values from 0-TS1

correspond to 0, TS1-TS2 to 1 and TS2-1 to2. Hence we obtain table 4.3.

CONDITION INPUT1 INPUT2 f() OUTPUT
1 0 0 x0 0
2 0 1 x0 + δ1 1
3 0 2 x0 + δ2 2
4 1 1 x0 + 2δ1 2
5 1 2 x0 + δ1 + δ2 0
6 2 2 x0 + 2δ2 1

Table 4.3: Necessary and sufficient conditions for modulo addition

4.3 CODING TO CHECK FOR PARAMETERS SATISFYING THE

CONDITION

Having obtained the reduced table,we need to find five parameters which would sat-

isfy the six conditions. An algorithm for this would be a process of order n5 (where

n =1/smallest interval in which we check for feasible value). Hence this involves a

lot of memory and computation time. So we were unable to work with the code for

smaller intervals.

24

4.4 REDUCTION OF PARAMETERS FOR COMPUTATIONAL EFFI-

CIENCY

So as to make the code more efficient, we fixed some of the parameters.This not

only reduced the order, but we could also scale down the region to be checked in

for other parameters since they are related. But even after days of trial and error

in regions that seemed to be prospective from the graph, we were unable to find a

solution .

4.5 ANALYSIS

As to understand the inability to find possible points satisfying the required con-

ditions, we tried reducing the required conditions. It was observed that even when

we check for in large intervals(0.1) for lesser number of condition(4), we have quite

a few values. This is also inferable from the large number of points we got for logic

gates (having only 3 conditions).

So what makes these conditions complex? Analysing with the help of Fig 4.1,

conditions two and three implies the function value of both is below the first

peak and so delta1 has to be less than delta2. Condition 5 says function value

x0+delta1+delta2 must be below TS1 while condition 6 says x0+2delta2 must give

function value between TS1 and TS2. This means x0+2delta2 < x0+delta1+delta2

or delta2 < delta1 which contradicts condition drawn from 2 and 3. Hence a solu-

tion does not exist.

In this situation, the first way forward seemed to be changing the definition of each

region. A cyclic shift of 0,1 and 2 over the regions 0-TS1, TS1-TS2 and TS2-1 does

not solve this problem. So regions where randomly defined. Neverthless, a choice

without similar contradictions where not obtained.

Hence the need was for a map that would solve the contradiction for the condition

5 and 6. This is not possible with a map having a constant sign(so far negative) of

second derivative. In other words, we needed a map which would shoot up again

after the second minima. Since obtaining the equation for such a map, without

25

Figure 4.1: Analysis figure 1

Figure 4.2: Analysis figure 2

discontinuities would be complex, we chose a piecewise linear map as shown in Fig

4.3. Having removed the constraints, it was now possible to implement the adder.

The corresponding figure obtained for implementation is shown in Fig 4.4. It was

obtained at a random choice derived from graphical analysis by choosing initial con-

dition as 0, delta1=0.1, delta2=0.34, lower threshold=0.3 and upper threshold=0.6.

26

Figure 4.3: Modified piecewise linear map

Figure 4.4: Result figure

27

Similarly, by choosing delta1 as 0.15, delta2 as 0.35, the other parameters remaining

the same as above.

Figure 4.5: Result figure

Having obtained particular values for the adder, we now needed a generic solution

or more precisely, a larger number of feasible regions. Hence, using the obtained

values, we tried to accumulate more of these. This was done using the conventional

method of sweeping used so far by fixing four parameters. The results obtained are

tabulated below.

Figure 4.6: Graphically obtained solutions

28

1)Sweeping T1(40 values)

x0=0, delta1=0.15, delta2=0.35, T2=0.6

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19
0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29
0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39

Table 4.4: Possible values of T1

2)Sweeping T2

The only possible value of T2 for the same set of x0,delta1,delta2 and T1 is T2 =

0.6.

3)sweeping x0

Only x0 = 0

4)sweeping delta1

possible values of delta1 are:

0.0800 0.0900 0.1000 0.1100 0.1200 0.1300 0.1400

5)sweeping delta2

possible values of delta2 are:

0.3300 0.3400 0.3500

For the generality of the proposed piecewise linear map, it is not only enough to

implement the adder, we need to show that different logic gates implemented in

logistic and tent map can also be realized using this model.

29

The necessary and sufficient conditions to be satisfied by the modified piecewise

linear map for the implementation of various logic operations are given below:

Operation AND OR XOR

Conditions f(x0) ≤ T f(x0) ≤ T f(x0) ≤ T

f(x0 + δ) ≤ T f(x0 + δ) > T f(x0 + δ) > T

f(x0 + 2δ) > T f(x0 + 2δ) > T f(x0 + 2δ) ≤ T

Operation NAND XNOR NOT
Conditions f(x0) = δ f(x0) > T f(x) > T

f(x0 + δ) > T f(x0 + (δ)) <= T f(x0 + δ) ≤ T
f(x0 + 2δ) ≤ x∗ f(x0 + (2δ)) > T

Table 4.5: Necessary and sufficient conditions to be satisfied by the
chaotic element to implement each of the logical operations

A few examples were tried out and their corresponding initial condition, delta

and threshold were tabulated as follows:

GATE INITIAL CONDITION(x0) DELTA THRESHOLD(T)
AND 0 0.5 0.5
OR 0 0.15 0.5

NAND 0.2 0.1 0.5
NOR 0.3 0.1 0.5
XOR 0 0.25 0.5
XNOR 0.3 0.3 0.5
NOT 0.2 0.2 0.5

Table 4.6: The values of initial condition, threshold and delta for the
implementation of logic gates using modified piecewise linear map

30

Figure 4.7: Implementation of AND gate using modified piecewise linear
map

Figure 4.8: Implementation of OR gate using modified piecewise linear
map

31

Figure 4.9: Implementation of NAND gate using modified piecewise
linear map

Figure 4.10: Implementation of NOR gate using modified piecewise linear
map

32

Figure 4.11: Implementation of XOR gate using modified piecewise linear
map

Figure 4.12: Implementation of XNOR gate using modified piecewise
linear map

33

Figure 4.13: Implementation of NOT gate using modified piecewise linear
map

Thus, now we finally have a model which can completely implement the logics

proposed until now. Though more intricate maps would be necessary in expanding

the arithmetic, the conclusions drawn above and the mode of analysis are sure to

pave way for future enhancements.

CHAPTER 5

USING SYNCHRONIZATION TO OBTAIN DYNAMIC

LOGIC GATES

The aim of chaotic computing is to use a single chaotic unit to emulate different

logic gates and perform different arithmetic tasks, and further have the ability to

switch easily between the different operational roles. The explicit chaos-computing

schemes that have been designed and implemented so far was all been based on

the thresholding method to achieve controlled responses from a chaotic system. We

now move on to a very different scheme to implement dynamic logic gates: We will

use the synchronization of a driver-and-response nonlinear system, to achieve logic

operations.

Generally, synchronization can be considered as the appearance of some relations

between functionals of two processes due to interactions. Complete synchroniza-

tion, namely, the exact coincidence of the states of systems, is the strongest form

of synchronization, and here we will base our scheme on this phenomenon. It may

be noted that synchronization has been widely used as a basis for communication

schemes. Now, in this Rapid Communication, we will demonstrate the use of syn-

chronization to obtain dynamic logic gates.

The logic cell here is comprised of one-way coupled nonlinear systems. The logic

output will be given by the synchronization error between the two systems compris-

ing the cell(see the schematic in Fig 5.1)

In our circuit implementation we consider one-way coupled Chua circuit, discussed

in introduction as the computing element. The corresponding circuit component

values are L = 18mH, R = 1710ohms, C1 = 10nF , C2 = 100nF . Chua’s diode

parameters are R1 = 220ohm, R2 = 220ohm, R3 = 2.2kohm, R4 = 22kohm,

R5 = 22kohm,R3 = 3.3kohm, and buffer=opamp AD712. Note that the circuit is

the one-way coupling configuration of the classic Chua’s circuit shown in fig 5.1 [5]

34

35

Figure 5.1: Synchronization using logic gates [5]

Figure 5.2: Chua circuit [5]

We varied the parameters αr through 7 to 10 and αd was assigned values 7, 8.5

and 10 corresponding to inputs 00, 01/10 and 11 respectively. Using Range-kutta

method the differential equations were solved and synchronization error between x3

and x3’ was found. On fixing threshold for synchronization error for different initial

conditions, different logic gates could be implemented the condition for which is

mentioned in the table.

ODE’s for drive parameter:

ẋ1 = αd[x2 − x1 − g(x1)] (5.1)

36

ẋ2 = x1 − x2 + x3 (5.2)

ẋ3 = −βx2 (5.3)

ODE’s for response parameter:

ẋ1
′ = αr[x

′
2 − x′

1 − g(x′
1)] (5.4)

ẋ2
′ = x′

1 − x′
2 + x′

3 (5.5)

ẋ3
′ = −βx′

2 (5.6)

Figure 5.3: Parameter setting of drive system yielding output of opera-
tion for six logic gates [5]

Synchronization error envelope for drive parameters: α1=7 corresponding to input

set (00) - square; α2=8.5 corresponding to input set (01/10) -circle; α3=10 corre-

sponding to input set (11)-triangle.

37

Results:

Initial condition [x1 x2 x3]=[x1’ x2’ x3’]=[-14 3 0]

Threshold for synchronization error: 0.25

Figure 5.4: Result figure

At αr= 7: XOR

For αd=7(INPUT 00), |X3−X3′| > 0.25 implies 0

For αd=8.5(INPUT 10/01), |X3−X3′| < 0.25 implies 1

For αd=10(INPUT 11), |X3−X3′| > 0.25 implies 0. Hence XOR.

At αr =8.5: NOR

For αd=7(INPUT 00), |X3−X3′| < 0.25 implies 1

For αd=8.5(INPUT 10/01), |X3−X3′| > 0.25 implies 0

For αd=10(INPUT 11), |X3−X3′| > 0.25 implies 0. Hence NOR.

At αr =10: XNOR

For αd=7(INPUT 00), |X3−X3′| < 0.25 implies 1

For αd=8.5(INPUT 10/01), |X3−X3′| > 0.25 implies 0

38

For αd=10(INPUT 11), |X3−X3′| < 0.25 implies 1. Hence XNOR.

Initial condition: [x1 x2 x3]=[x1’ x2’ x3’]= [-14 0 0]

Threshold for synchronization error: 0.2

Figure 5.5: Result figure

At αr= 7: XNOR

For αd=7(INPUT 00), |X3−X3′| < 0.2 implies 1

For αd=8.5(INPUT 10/01), |X3−X3′| > 0.2 implies 0

For αd=10(INPUT 11), |X3−X3′| < 0.2 implies 1. Hence XNOR.

At αr =8.5: OR

For αd=7(INPUT 00), |X3−X3′| > 0.2 implies 0

For αd=8.5(INPUT 10/01), |X3−X3′| > 0.2 implies 0

For αd=10(INPUT 11), |X3−X3′| < 0.2 implies 1. Hence OR.

At αr =10: XOR

For αd=7(INPUT 00), |X3−X3′| > 0.2 implies 0

For αd=8.5(INPUT 10/01), |X3−X3′| < 0.2 implies 1

39

For αd=10(INPUT 11), |X3−X3′| > 0.2 implies 0. Hence XOR.

Initial condition: [x1 x2 x3]=[x1’ x2’ x3’]= [-14 0 3]

Threshold for synchronisation error: 0.15

Figure 5.6: Result figure

At αr= 7: XNOR

For αd=7(INPUT 00), |X3−X3′| < 0.15 implies 1

For αd=8.5(INPUT 10/01), |X3−X3′| > 0.15 implies 0

For αd=10(INPUT 11), |X3−X3′| < 0.15 implies 1. Hence XNOR.

At αr =8.5: AND

For αd=7(INPUT 00), |X3−X3′| > 0.15 implies 0

For αd=8.5(INPUT 10/01), |X3−X3′| > 0.15 implies 0

For αd=10(INPUT 11), |X3−X3′| < 0.15 implies 1. Hence AND.

At αr =10: (0 1 0) XOR

For αd=7(INPUT 00), |X3−X3′| > 0.15 implies 0

For αd=8.5(INPUT 10/01), |X3−X3′| < 0.15 implies 1

For αd=10(INPUT 11), |X3−X3′| > 0.15 implies 0. Hence XOR.

40

Note in all the case that for different values of αr we are able to implement different

logics. In the above cases, instead of choosing αr in intervals of 1.5 we could choose

any value. In this particular circuit, we could desirably vary it around 9. For

instance consider the initial condition [-14 0 3] discussed above.

At αr = 9.7, fixing error threshold at 0.25, we have,

For αd = 7(INPUT 00), |X3−X3′| < 0.25 implies 1

Figure 5.7: Result figure

For αd = 8.5(INPUT 10/01), |X3−X3′| < 0.25 implies 1

For αd = 10(INPUT 11), |X3−X3′| > 0.25 implies 0. Hence NAND logic is imple-

mented.

41

If suppose for the same initial condition, error threshold is fixed at 0.2 and αr=9,

For αd=7(INPUT 00), |X3−X3′| > 0.2 implies 0

Figure 5.8: Result figure

For αd=8.5(INPUT 10/01), |X3−X3′| < 0.25 implies 1

For αd=10(INPUT 11), |X3−X3′| < 0.25 implies 1. Hence OR logic is implemented.

42

Yet again, at αr=7, if error threshold is fixed at 0.04,

For αd=7(INPUT 00), |X3−X3′| < 0.04 implies 1

Figure 5.9: Result figure

For αd=8.5(INPUT 10/01), |X3−X3′| > 0.04 implies 0

For αd=10(INPUT 11), |X3−X3′| > 0.04 implies 0. Hence OR logic is implemented.

CONCLUSION

A recurring theme of research in chaotic systems over the last decade has been that

chaos provides ”flexibility” in the performance of natural systems and provides such

systems with a rich variety of behaviours that can be utilized for more versatile

performance. Our aim was to construct general multipurpose programmable hard-

ware out of chaotic elements. Literature survey suggested that this would also mean

increase in computational speeds through the exploitation of many dynamical states

available to chaotic systems.

The results we obtained in chaos computing have shown that a single nonlinear

dynamical system can (with proper tuning of parameters and control inputs) be-

come any logic gate. We have been able to filter quite a number of parameter

sets for AND, OR, NAND, NOR and XOR gates in three different maps and us-

ing techniques of single as well as multiple iteration.The gates where implemented

using logistic map and topological tent map. Since modulo arithmetic could not

be implemented using both, we introduced a piecewise linear map to implement

it. This further emphasis the flexibility of the technique over hardwired control.

In multiple-iteration one notes that varied temporal patterns embedded in the dy-

namical evolution of nonlinear systems are capable of performing sequences of logic

operations in time. Thus minimal control is needed thereby we only invoke con-

trol mechanism on initialization, from there on we just monitor the state and the

morphing between gates takes place in time evolution, instead of varying the con-

trol parameters. So one can set a global parameter and let time evolve the logic,

rather than micromanage each morphing step through a separate parameter change.

Further, trying to implement the modulo arithmetic, the importance of precision

and dependence on initial condition was very evident. Even though the constrains

of modulo three arithmetic was apparent on analysis, considering the complex pat-

tern of non linear systems, one cannot expect it to be so for higher modulo opera-

43

44

tions. This stresses on the requisite of a more general map for the operations. This

presents wide latitude of further research area in the field.

Similarly, in the research we have been introduced to the potential of the method of

synchronization. In particular, we have shown the direct and flexible implementation

of the basic logic gates, using a single drive-response unit. Arrays of such logic

cells may be reconfigured easily by a stream of logic-control parameter values to

the response system. So such systems are readily programmable and architectures

based on such logic implementations may serve as ingredients of a general purpose

computing device, that who knows may in the next electronics revolution replace

the existing statically wired hardware!

FUTURE ENHANCEMENT

Having found out a map to implement logic gates as well as mod three addition, it

could be extended for higher modulo and a generic map to implement up to mod-n

can be derived. Further, the condition for carry has to be added and thus expanding

our model would give a complete full adder. This would be a great leap in chaotic

computing since one can implement subtractor, modulo multiplication and division

using such a model.

Also we have seen the enormous potential of the method of synchronization. It

could be used to implement logics without the complexities of multiple iterations.

In hardware implementation, it would be possible to switch between a wide range

of logic by varying a lesser parameters than in case of thresholding technique.

With the help of faster computing techniques, there lies ahead a huge scope for

chaotic computing. There is a vast amount of power of chaos to be harnessed.

45

LITERATURE CITED

[1] J. A. Y. K.T.Alligood, Tim D. Sauer, Chaos: An Introduction to dynamical
systems.

[2] W. S.Sinha and T.Munakata, “Flexible parallel implementation of logic gates
using chaotic elements.”

[3] W. L. S. S. K.Murali, Abraham Miliotis, “Logic from nonlinear dynamical
evolution.”

[4] K. S. W.L.Ditto, A.Milliotis and M.L.Spano, “Chaogates:morphing logic gates
that exploit dynamical patterns.”

[5] S. S. K.Murali, “Using synchronization to obtain dynamic logic gates.”

[6] T.Munakata and S.Sinha, “Implementation of fundamental logic gates by 1-d
chaotic elements.”

[7] W. T.Munakata, “Chaos computing:implementation of fundamental logic gates
by chaotic elements.”

46

