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Abstract

The improvement in text-to-speech (TTS) synthesis also poses the problem of bio-
metric attack on speaker verification system. In this context, it is required to
analyse the performance of these system using false acceptance rate to impos-
tor using artificial speech and incorporate features in the system to make it robust
to these attacks. The aim of the study here, is to understand different aspects
and hence extract appropriate features for distinction of natural and synthetic
speech. The study focuses on understanding those aspects which gives natural-
ness to human speech that the present day TTS systems fail to capture. Three
different aspects, viz.,Fourier transform phase, nonlinearity and speech prosody
are analysed. The results obtained provides an evaluation of the naturalness of
the synthetic speech used and gives direction to improve robustness against bio-
metric attacks in speaker verification systems.
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CHAPTER 1

Introduction

Sound waves and their perception has fascinated humans from time immemo-
rial. Excavations in the oldest archeological sites of the world have resulted in
discovery of musical instruments such as The Divje Babe flute that dates back to
around 40000 BC [1]. The scientific understanding of sound waves as we know
today, was first recorded in the studies of Pythagoras and later Aristotle. Under-
standing of speech as signals and their production mechanism happened much
later. Speech synthesis is the artificial production of human speech. Literature
from the early 2nd millennium refer to legends of machines to produce human
speech. With the advent of computers and the tremendous growth in computa-
tional ability, today speech synthesis is one of the demanding research area with
giants like Google, Microsoft and militaries of the nations spending millions on
speech-based research every year.

1.1 Text-to-Speech Synthesis

A Text-to-Speech (TTS) system is a speech synthesiser that convert normal text
to speech [2]. One approach to generating synthetic speech is by concatenating
speech segments from a large database. The units are chosen to minimise the
acoustic distortion due to difference between output of the TTS system and the
target speech [3], [4]. In [5], units in the database is considered as a state tran-
sition network, transition cost being the distance between a database unit and a
target and an estimate of the quality of concatenation of two speech sound units.
Viterbi search was proposed to select the best units for concatenation. Units cho-
sen be phoneme, diphone, syllable, etc. Hence, the name unit-selection-synthesis
(USS). Over the years, TTS systems using many approaches have evolved. For
example, formant synthesis, statistical parametric synthesis (SPS) are some of the
approaches for speech synthesis.
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1.2 Automatic Speaker Verification (ASV)

Speaker recognition is the identification or verification of a person from his or her
voice with the help of machines. Speaker recognition encompasses speaker veri-
fication and identification. Speaker verification is the technique to judge whether
input speech is the same as the claimed speaker’s speech. Use of machines to ver-
ify a person’s claimant identity from his or her voice is called Automatic Speaker
Verification (ASV) [6]. Figure 1.1 shows block diagram for a typical ASV system.
ASR at a fundamental level is a pattern recognition problem, consisting of two

Figure 1.1: Block diagram of a Typical ASV system after [7].

blocks, feature extraction and pattern classification. Ideally the feature extracted
should have characteristics that occur naturally or can be extracted without sig-
nal distortion, be easy to measure, stable over time, environment and be robust
to attack etc. The pattern classifier matches the input features with the feature in
the database to make a decision on a claimant speaker. The output of the classifier
is the percentage identity in comparison with the claim and a decision is made
based on a threshold criteria.

1.3 Motivation

With the improvement in understanding speech signals and widening of their
application, speech recognition and speaker verification has also evolved into vast
research areas. For use of ASV systems in practical application, threat to ASV
systems in the form of biometric attacks are also to be examined. In addition to
impostor techniques such as mimicking a speaker, playback of voice recording
and voice modification, with improvement in TTS systems, the analysis of perfor-
mance of ASV systems in their context and making the systems robust to deliber-
ate attacks using synthetic speech is also an important factor to be considered in
designing ASV systems. Chapter 2 discusses in detail, different work carried out
in recent years in the context of impostor attack.
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1.4 Problem Overview

The problem of distinction of natural and synthetic speech is essentially, finding
the component of natural speech that cannot be mimicked in synthetic speech.
From a broader perspective, rather than confining to distinction from the synthetic
systems, it is required to view the problem as understanding the naturalness in
speech.

The study presented here is restricted to artificial speech and do not deal with
attacks such as mimicking, voice modification, identical twins, etc. In this context,
the existing state-of-the-art automatic speaker recognition systems fails to capture
a wealth of longer-range and linguistic information that also resides in the signal
and the finer nonlinear components of natural speech that are seldom used in
modelling. To begin with, USS-based speech is closest to natural speech. The
difference lies only at the point of concatenation. Figure 1.2 shows natural, HTS-
based and USS based synthetic speech for the same Gujarati utterance.

(a) (b)

(c) (d)

(e) (f)

Figure 1.2: Natural, HTS and USS speech and their respective spectrogram for
same Gujarati utterance. (a), (b) corresponds to male and female natural speech,
(c), (d) to male and female HTS-based speech and (e), (f) to male and female USS-
based speech, respectively.
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A basic difference that can be observed is the prolonged pauses and mixing
between different phonemes in natural speech. This prosodic aspect is expected
to be captured in Fujisaki parameter extraction discussed in chapter 5. Apart from
this, the transitions at the points of concatenation are pretty smooth that it is not
distinguishable with human eyes in most of the cases. To start with, basic speech
processing tools such as Mel Frequency Cepstral Coefficients (MFCC), cochlear
filter cepstral coefficients (CFCC), etc. were used to try to capture spectral fea-
tures. The histogram of the MFCC, for natural and synthetic speech for both male
and female speaker is shown in Figure 1.3. It can be observed that while MFCC
values of natural speech are concentrated near zero, it is not so for USS and HTS
speech. Furthermore, MFCC coefficients for female speaker is more spread than
corresponding MFCC’s for male voice . However there is not much difference
between MFCC’s of natural and synthetic speeches for the same utterance. This

(a) (b)

(c) (d)

(e) (f)

Figure 1.3: Histogram of 10 MFCC values corresponding to (a) male and (b) fe-
male natural speech, (c), (d) male and female USS-based speech and (e), (f) male
and female HTS-based speech, respectively.

can be further seen in the plot of variances of the coefficients as shown in Figure
1.4. It is seen that the plots for all the three utterances coincide for both male and
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female voice. This is justified by the fact that the basic system used in Festival
software for USS speech (ref, Appendix:A) uses MFCC with several other spec-
tral features to improve its performance. Similarly cepstral coefficients are used
in HTS systems. This prompts one to look at features that are generally not used
in TTS synthesisers.

(a) Variance of MFCC’s for male voice.

(b) Variance of MFCC’s for female voice.

Figure 1.4: Comparison of variance of MFCC’s

The synthetic speech used in the research presented here is from two synthesis-
ers, viz., USS speech from system trained using Gujarati language, both male and
female speakers and Hidden Markov Model (HMM)-based Text-To Speech(HTS)
also trained for same speakers in Gujarati. Appendix A and appendix B gives a
detailed description of the training and synthesis. Unless specified, the natural
data used in the study is studio recorded speech sampled at 16 kHz. The same
speaker data for different utterance is used to train the TTS systems.

1.5 Organisation of the Thesis

The organisation of the thesis through chapters from 1 − 4 is presented as fol-
lows. Chapter 2 gives a review of the literature survey involved in arriving at

5



the problem statement. Furthermore, existing methodologies that have been re-
searched in this area are discussed. In Chapter 3, group delay as a feature for
analysis of natural and synthetic speech is discussed. Since it is a century old ob-
servation that human ear is deaf to phase changes, TTS systems generally ignore
the phase information. The study involving signal processing-based method of
relative-phase-shift(RPS) has been treated as a reference point for this study [8].

Chapter 4 discusses extracting nonlinearity from speech data. The traditional
approach to speech signal modeling has been the linear, i.e., source-filter model.
This involves approximating the nonlinear aspects of speech production using
assumptions of linear acoustics of sound wave in the vocal tract. Using Lyapunov
Exponent (LE) as the feature to capture amount of chaos inherent in the speech
samples, study has been carried out to understand the difference between natural
speech and the synthetic speech. The chapter concludes with using LE to classify
phoneme instances of synthetic and natural speech data.

Looking into how to distinguish natural and synthetic speech, the most in-
teresting initial observation is that our ears do it with ease. This is due to the
prosodic aspects such as positional, contextual and phonological information al-
ways present in natural speech. Chapter 5 discusses Fujisaki model for prosodic
parameter extraction. The phrase and accent component of natural and synthetic
speech has been studied. The speaker-dependent parameters in both the cases is
found to have considerable difference. This in turn enables using these parame-
ters for detection of synthetic speech. Finally, the thesis is concluded in Chapter 6.
A summary of the work done and the results obtained is discussed here. Further-
more, the chapter discusses application of the insights that the study has provided
and the scope of future work in the area.

1.6 Chapter Summary

This chapter has provided the problem formulation and motivation of the thesis.
The chapter gives an introduction to the various aspects of impostor detection to
be discussed further. In addition a road map of the work done and layout of the
thesis is provided here. The next chapter provides a brief literature search on the
problems addressed in the thesis.

6



CHAPTER 2

Literature Survey

2.1 Introduction

This chapter intends to give an overview of different terminologies and technolo-
gies discussed in this thesis. A background study of the prior work carried out in
different areas related to the problem, that has formed a base for the work carried
out in the research is presented here. Though the particular problem of impostor
attack is relatively untapped, different researches that has motivated this study is
discussed. Figure 2.1 shows a tree of thesis overview and different aspects of the
problem.

Figure 2.1: Thesis Overview
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2.2 Automatic Speaker Verification

The objective in speaker verification (SV) is to accept or reject a claim of identity
based on a voice sample. The problem of identification is to decide if a speaker is a
specific person or is among a group of persons and hence the problem is of pattern
recognition. Gaussian mixture model universal background model (GMM-UBM)
is one of the most used approach for text-independent speaker recognition appli-
cations [9]. In GMM, expectation maximisation algorithm is used to estimate model
parameters from feature vector of the speaker. A log-likelihood detection is used to
verify the claimant speakers identity [10]. As ASV systems gain widespread use,
it is crucial to understand the errors made by these systems, viz. the false accep-
tance of an invalid user and the false rejection of a valid user [6]. In the study
concerning synthetic speech, the aim is to reduce false acceptance of invalid user.

2.3 Various Biometric Attacks

The simplest impostor is playback of a voice recording for a targeted speaker and
the logical solution is a text-prompted approach. In addition, the vulnerability
of SV to voice mimicking by humans using twins has also been examined [7].
Technical impostor attacks include, synthetic speech production by concatenation
of recorded speech. This method would require large recorded speech database
of the target speaker. Another plausible way for an impostor to attack is to try
and re-synthesise his/her own voice into that of the claimant speaker through
some kind of transform [11]. Today’s state-of-art systems include, HMM, USS
and artificial neural networks.

2.4 Problem of Impostor

There is considerable amount of work in industry, national laboratories and uni-
versities in the area of speaker-verification. Few benchmark work in the specific
area of impostor attacks is presented in Table 2.1. "Source" refers to a citation in
the reference and "year" refers to the year of publication. "Attack" refers to the
type of impostor attack used and "method" to the SV system used in the study.
"Error" column shows the percentage of false acceptance for male speaker data
for each of the system.

The earliest and most used method in SV systems is the likelihood detector.
[12] uses it to analyse the performance of a linear predicted signal. Lindberg and
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Table 2.1: Selected chronology of published work in analysis of attack on SV sys-
tems

Source Year Attack Method Error

F.K.Soong, et al.
[12]

1985 Linear prediction
analysis

Likelihood ratio
detector

5 %

Lindberg and
Blomberg [13]

1999 concatenation and
resynthesis

log-Likelihood 42.6 %, 6.8
%

Zhizheng, et al.
[14]

2012 converted speech us-
ing GMM and USS

MODGDF-
phase

9.13 % and
4.6 % resp.

De Leon, et al.
[8]

2012 HMM-based speech GMM with RPS 10.1 %

Zhizheng, et al.
[15]

2013 converted speech
using JD-GMM and
USS

GMM-UBM 42.5 %
and 39.2 %
resp.

Blomberg in their 1999 paper gives a detailed analysis of the then popular con-
catenated target speech, re-synthesis of the target speech and diphone synthesis
of the target. Later, the performance of concatenated speech against the present
state-of the-art GMM-UBM system was done in 2012 [14]. In the following year,
studies have also been reported on the evalutation of GMM-UBM against HMM-
based speech [8]. This paper for the first time proposes dedicated feature of RPS
for SV system.

The general trend shows that, with the improvement in quality of artificial
speech production, the performance of state-of-art SV systems with additional
features is also low. This is because, the design of TTS systems concentrate on
reducing false rejection rate. The GMM-UBM used in [8] has acceptance rate of
true claim as 100 %.

2.5 Phase-based Approaches

Since the human auditory system is insensitive to the phase of speech signal’s
[16], TTS is normally based on a minimum-phase vocal tract model. [17] discusses
the processing of phase of Fourier transform(FT) to derive smooth log-magnitude
spectrum corresponding to the vocal tract system and [18] discusses an applica-
tion for modified group delay in phoneme recognition. Another phase based feature,
relative phase shift(RPS) for impostor detection was published in [8].
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2.6 Nonlinear Analysis

The enhancement in understanding the speech production mechanism has moti-
vated many studies involving analyzing nonlinear behaviour in speech produc-
tion systems. Studies reported in [19] and [20] explore models suitable for ex-
tracting information about modulation, fractals and chaotic structure of speech sig-
nals and use it in applications such as recognition and synthesis. In addition,
quantitative measures of chaos such as Correlation Dimension (CD) and LE have
been used in [21] for speech decomposition. With improvement in TTS systems,
nonlinearity-based feature can be used to improve ASV systems.

2.7 Chapter Summary

This chapter is a background study on the work done in area of impostor attack
and the different methods used in the study for analysis of natural and synthetic
speech. Different aspects of SV that has lead to the thesis topic has been discussed.
It is noted that though the area of SV and TTS systems is subjected to a lot of
extensive study, the specific problem of natural and synthetic speech is relatively
untapped. In addition with fast improvement in speech production techniques
and increased real life application of speech based systems, the problem requires
to be addressed.
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CHAPTER 3

Phase-based Approach

3.1 Introduction

Studies reported in [8] shows the relevance of Fourier transform phase in the con-
text of speaker verification. This motivates one to use phase-based features for
distinction of synthetic and natural speech. However, using the phase spectrum
directly has the disadvantage that it requires unwrapping. Another measure of
phase that is relevant in this context is group delay. This chapter explores group
delay based features for detection of synthetic speech.

3.2 Modified Group Delay

Group delay is the negative derivative of the phase function and can be directly
calculated from the signal. If x(n) is a speech frame, whose FT X(ω) is given by

X(ω) = |X(ω)|ejθ(ω), (3.1)

then group delay is given by,

τ(ω) = −dθ(ω)

d(ω)
. (3.2)

A multiplication in magnitude spectrum becomes multiplication in group delay
domain. This additivity property is made use of in formant extraction. Closely
spaced formants are better resolved in group delay-domain as shown in figure 3.1
below.

When dealing with digital signal, the computation is accurately represented
[22] by,

τ(ω) =
XR(ω)YR(ω) + XI(ω)YI(ω)

|X(ω)|2 , (3.3)

11



Figure 3.1: The top figure shows the plot of magnitude spectrum and the bottom
one shows formants in group delay plot for a cascaded system with poles at ω =
0.6 rad and 0.8 rad .

where y(n) = nx(n) and its FT Y(ω) = YR(ω) + jYI(ω) and X(ω) = XR(ω) +

jXI(ω). |X(ω)| represents the magnitude of X(ω). Due to excitation of source
and short-term processing, zeros occur in the vocal tract modelling and at these
points, the denominator of the expression given in eq.(3.3) becomes zero. Com-
putation of group delay near these zeros hence gives large values and masks the
formant structure. This issue is addressed by modified group delay function (MOD-
GDF) proposed in [22]. MODGDF for an all-pole system is defined as,

τm(ω) = sign|τ′(w)|α, (3.4)

where
τ
′
(ω) =

XR(ω)YR(ω) + XI(ω)YI(ω)

|S(ω)|2γ
. (3.5)

Here, |S(ω)| is the cepstrally smoothed version of |X(ω)|. α and γ, control the
dynamic range of MODGDF, 0 ≤ α, γ ≤ 1.

To compute MODGDF-based feature from the speech signal, first it is required
to represent the speech signal as an all-pole system. This is done using linear
prediction analysis [23]. Speech sound with impulsive or periodic sources, are
loosely categorised as "deterministic", while speech sounds with noise sources
as "stochastic" sounds. Estimating all-pole model parameters for these systems
provides a desirable signal in both time and frequency-domain. A signal Sn is
considered to be linear combination of the past outputs and the inputs from time

12



1 to n.

Sn =
p

∑
k=1

akŜn−k + G
q

∑
l=0

blun−l, b0 = 1, (3.6)

where un is the assumed input signal, ak, 1 ≤ k ≤ p, bl, 1 ≤ l ≤ q and G are
parameters of the hypothesised system. To minimise the error of approximation,
the error signal, i.e., the difference between original signal and predicted signal
Sn − Ŝn is differentiated with respect to the coefficients ak’s. This gives Rnα = rn,
where R refers to the autocorrelation matrix which is a Toeplitz matrix and α is the
matrix of all coefficients and r is a p× 1 matrix of autocorrelation values for lag 1
to p. The equation is solved using Levinson’s recursion algorithm.

3.3 Algorithm and Analysis

A given speech signal is first fragmented into frame sizes corresponding to more
than a pitch period, typically 30 ms with more than 50 % overlap between the
frames. Phase-based analysis has used natural speech and speech from USS, HTS
synthesisers. These would be henceforth referred to as USS-based and HMM-
based speech. After finding LP coefficients and hence the system function, cor-
responding to the speech frame, the modified group delay is calculated. Figure
3.2 shows the MODGDF for the all pole model of a speech segment. To quan-
tify MODGDF, its discrete cosine transform (DCT) is taken. DCT represents the
energy in a signal. Figure 3.3 shows the entire process in extraction of feature.

Since the maximum energy in the signal is concentrated in its larger DCT coef-
ficients, the coefficients were sorted and the probability distribution of the promi-
nent coefficients were observed for samples of natural, HMM-based and USS-
based speech signals. Figure 3.4 shows the probability distribution of largest 12
DCT coefficients over all the frames for the three cases.

For all the coefficients, it can be noted that the maximum DCT value is for
the natural speech closely followed by USS and least for HMM. This implies that
natural speech has maximum amount of inherent phase mismatches. HTS being
based on parametric synthesis, fails to capture those. Since this pattern is recur-
ring in value of PDF, the DCT of modified group delay with the maximum value
could be used as a parameter for distinction of synthetic and natural speech.

13



(a)

(b)

(c)

Figure 3.2: LP analysis using 16 prediction coefficients. (a) Shows the original
signal in blue and the predicted signal in red, (b) the frequency spectrum of the
predicted signal and (c) shows group delay plot derived from the predicted signal.

Figure 3.3: Algorithm for parameter extraction using MODGDF.

3.4 MODGDF for USS-based Synthetic Speech

Since the USS speech is composed of concatenated units of natural speech, their
difference lies only at the point of concatenation. To further understand the ef-
fect of MODGDF, USS speech from different hours of training data was analysed.
As the number of hours of training increases, the chance of adjacent units being
selected from recordings farther in time increases. A delay in time-domain corre-
sponds to addition of phase of the signal. It is observed that even though there is
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Figure 3.4: PDF’s over the frames of DCT coefficients : x-axis-value of DCT of
MODGDF, y-axis-Probability over all the frames.

Figure 3.5: PDF over all the frames for the first DCT coefficient for male voice.
The circled portion shows the largest DCT coefficient values.
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no difference in hearing or in the spectrogram of say,1 and 8 hours training-based
synthesis, the maximum value of modified group delay is considerably different.
Figure 3.6 shows the value of maximum DCT value for USS speech for a particular
text for different hours of training from 1-8 hrs.

Figure 3.6: Maximum value of DCT coefficient of MODGDF for USS-based speech
for different hours of training for male voice

It is noted here that hours of training has no direct relation on the largest DCT
coefficient. This is in accordance with the observation that DCT values for natural
speech is greater than USS-based speech implying the concatenation introduces
no greater phase mismatches. Figure 3.7 shows MODGDF of a speech segment
containing concatenation point. The maximum value of MODGDF for a speech
segment containing the point of concatenation shown in figure 3.7b is−0.25 while
for adjacent window not containing concatenation point, it is−0.4. Since concate-
nation points does not necessarily correspond to maximum group delay, MOD-
GDF does not provide a robust enough feature for distinction of USS-based and
natural speech. Further exploration is required in this regard.

3.5 MODGDF for HTS-based Synthetic Speech

From the pdf of DCT coefficients, it is noted that, the value of DCT is considerably
smaller for HMM-based speech as compared to natural and USS-based speech. To
explore this further, 100 samples each of HMM-based and natural speech for male
voice was considered. Figure 3.8 shows the histogram of the DCT values for the
samples. The mean DCT value for natural speech is 0.22 and that of HMM-based
speeches is 0.19. The same for USS was observed to be close to natural speech at
0.21.

The DCT values for natural speech is sparsely distributed. Furthermore, for
each individual utterance, the value of natural speech is higher than that of HMM
synthetic speech. Hence, it can be concluded that the MODGDF is always greater
for natural speech.
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(a) The concatenated speech signal. The orange line shows the
point of concatenation

(b) Segment of speech containing point of concatenation and the corresponding MOD-
GDF

(c) Segment of speech that is from a single unit and the corresponding MODGDF

Figure 3.7: Study of point of concatenation

3.6 Chapter Summary

The results obtained shows that the amount of phase mismatch inherent natural
speech is higher than those produced artificially. Since USS speech contains ma-
jorally natural speech and since, the phase mismatches happening at the points of
concatenation is relatively less, group delay is not a good measure of distinction.
HMM-based synthetic speech is produced depending on certain fixed parame-
ters that are learned. Since phase-related measures are not explicitly included as
a training parameter, the produced speech fails to capture the phase deviations.
Hence, given a speech sample for comparison, HMM speeches are distinguish-
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(a) (b)

Figure 3.8: Histogram of largest DCT of MODGDF of (a) natural speech and (b)
HMM-based speech

able from natural speech. This is in accordance with the results obtained using
RPS though in the aspect of implementation, MODGDF is easier to be extracted.

The results obtained in this section motivates one to look further into explor-
ing natural components of speech that TTS systems fail to incorporate. Moving
a step ahead, the next chapter tries to understand those aspects of speech that
makes natural systems unique. Even with the exponential rate of advancement
of technology, we still do not understand life forms completely. The attempt is to
understand chaos and nonlinearity deeply embedded in speech signals.
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CHAPTER 4

Nonlinear Analysis

4.1 Introduction

Many investigations on speech nonlinearities have been carried out and these
studies provide strong evidences to support nonlinear system modelling of speech
production. The nonlinear characteristics that these studies point to are analo-
gous to chaotic systems. Chaos is the phenomenon of occurrence of bounded
non periodic evolution in completely deterministic nonlinear dynamical systems
with high sensitive dependence on initial conditions. For a system to be chaotic,
it should have sensitive dependence on initial conditions. It has aperiodic orbit.
Though it seems to be random, system is actually deterministic. The rate of sepa-
ration of nearby trajectories is positive [24].

Studying real-life nonlinear deterministic systems involve modeling them us-
ing an attractor model, i.e., a set values to which the system evolves independent
of the starting point. Hence, measures that are invariant in this approximation
are required for quantizing the nonlinear time series. Some such measures are
correlation dimension(CD) and Lyapunov exponent. CD gives lower boundary for
the degrees of freedom a signal possesses and hence, a measure of complexity of
the system [25]. LE estimates the mean exponential divergence or convergence of
nearby trajectories in phase-space.

4.2 Chaos and Lyapunov Exponent

The similarities of chaotic systems to speech production were discussed in [26]
coincidentally following another study reported in [27] which proposed an algo-
rithm for finding largest LE (LLE) (though the algorithm was applied for speech
signals later in [28]). The Rosenstein’s algorithm is used for finding largest LE in
this study. Since understanding chaoticity requires understanding the speech sig-
nal at sample-level, the choice of algorithm that works well for smaller data-sets
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is an appropriate choice. The analysis is done using natural speech and HMM
systems trained on Gujarati data from a single speaker with sampling frequency
16 kHz. Overlapping speech windows of 400-600 samples were considered.

4.3 Rosenstein’s Algorithm for Largest Lyapunov Ex-

ponent

The Rosenstein’s algorithm involves reconstructing the attractor dynamics from
the speech sample by using method of delays [28]. The first step involves express-
ing the reconstructed trajectory say X, as a matrix where each row Xi is a phase-
space vector at discrete-time i. For an N-point time series (x1, x2, ...xn), we have

Xi = (xi, xi+τ, ..., xi+(m−1)τ), (4.1)

where τ is the reconstruction delay and m is the embedding dimension. The re-
construction delay τ was taken as the time at which the autocorrelation function
has the first zero. This would make the coordinates linearly uncorrelated. After
reconstructing the dynamics, the algorithm locates the nearest neighbour of each
point on the trajectory. The nearest neighbour, Xi, is found by searching for the
point that minimizes the distance to the particular reference point, Xj. The LLE is
then estimated as the mean rate of the nearest-neighbour separation. The LLE λ

is defined using
d(t) ≈ Ceλt, (4.2)

where d(t) is the average divergence at time t and C is a constant that normalizes
the initial separation [24]. Assuming the jth pair of nearest neighbors diverge
approximately at rate given by the LLE,

dj(t) = Cjeλi(i∆t), (4.3)

where ∆t is the sampling period of the speech time series, dj(t) is the distance
between the jth pair of nearest neighbors after i∆t seconds, and Cj, is the initial
separation. Taking logarithm and averaging over all j gives LLE. Using a least-
squares fit to the "average" line defined by

y(i) =
1

∆t
〈ln dj(i)〉 (4.4)

where 〈.〉 denotes the average over all values of j gives largest LE. Table 4.1 shows
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Phoneme Natural HTS-based

aa

s

p

f

Table 4.1: Phase plots of different phonemes.
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the phase-plot for phoneme /aa/, /p/ and / f / in Gujarati, sampled at 16 kHz
for delay in the range 1-5. Phase-plot shows all possible values of the system.
The system value is plotted against time delayed values of the same system. It
can be observed for /aa/ and /p/ that the orbits are deterministic and aperiod.
In addition, for different initial conditions, they do not follow the same orbit, ex-
hibiting all the characteristics of a typical chaotic attractor. More importantly, in
case of HTS-based speech, the attractor can be observed for all the phonemes. This
implies that HMM speech is more chaotic than natural speech for all phonemes
under consideration.

4.4 Experimental Setup and Results

This section intends to discuss experiments conducted and their results. Instances
of phoneme from natural speech samples and HTS-based speech for single Gu-
jarati speaker are considered. The initial stage of study involved, understanding
the nature of the speech samples. The speech segments were fragmented into
overlapping windows and largest LE of each frame was calculated. Plot of /LLE

(a) Largest LE over all the frames for natural and HMM based synthetic speech sam-
ples of phoneme /aa/.

(b) Largest LE over all the frames for natural and HMM-based synthetic speech sam-
ples of phoneme /f/.

Figure 4.1: Largest LE comparison.

over all the frames for vowel /aa/ and fricative / f / for overlapping windows of
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(a) (b)

Figure 4.2: Histogram showing distribution of largest LE for samples of (a) natural
and (b) HTS-based synthetic speech.

size 480 samples is shown in figure 4.1a and figure 4.1b. It can be noted that the
value of LLE is more in the case of vowel /aa/. Furthermore, for all the phonemes,
it is observed that the value of LLE is higher in the case of HTS-based speech.
This is explained by the fact that HMM uses statistical parametric speech syn-
thesis. Hence, the modeling of a particular speech for the input text is based on
context- dependent phonemes from the training phase. Since the speech is vocoded,
the modeling of the voice source is naive in the sense that periodic and aperiodic
excitations are switched unlike a natural source where they are mixed.

For the usefulness of the observation in the context of speaker verification,
the experiment was extended to 50 instances of each of the phoneme. Phonemes
were extracted from natural speech signal and the HTS-based speech signal from
the HTS system mentioned above. The LLE among all its frames was used to
represent a particular sample. The distribution of the LE for phoneme /aa/ for
natural and synthetic speech is shown in figure 4.2.

It is observed that the distribution of the LLE for natural and synthetic speech
is different. The distributions are entirely non-overlapping. In addition, the aver-
age value of LLE is higher in the case of HTS-based synthetic speech. This differ-
ence between synthetic and natural speech can be used in ASV systems. Results
obtained in this study shows means to improve the performance of the system.

Figure 4.3 shows the distribution of the data points corresponding to 50 in-
stances of natural and synthetic phoneme /aa/. In the 2− D plot, the separation
of the natural and HTS speech data points into different clusters is clearly ob-
served. Fixing a threshold at an optimum value of maximum LE 0.25 and second
largest LE 0.2 would give a false acceptance rate of synthetic speech to be 4 %.
Though the results could vary based on the extraction of phonemes, use of LE is
certainly a huge improvement over the phase-based methods proposed earlier.
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Figure 4.3: Classification of natural and synthetic signal corresponding to of
phoneme/aa/. The blue points represent natural speech and red ones correspond
to synthetic speech. The dotted lines show the clustering of data points.

4.5 Chapter Summary

With a different synthetic speech production, the error rate would increase. For
instance, using speech from USS-based system for impostor attack would require
a different approach than directly using the phonemes. Since the phonemes used
are directly from the training natural speech, the property of difference in chaotic-
ity made use of here is not valid. Hence, point of concatenation becomes of signif-
icance. Nevertheless, the experimental results obtained paves way to look at the
problem of speaker verification from a different perspective. With the increasing
use of speech-based systems in real-life application, the linear approximations
used in speech modeling misses out some factors that might prove important.
Furthermore, study on chaoticity brings one closer to understanding the natural-
ness in the human speech production.
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CHAPTER 5

Prosodic Aspects: Fujisaki Model-based

5.1 Introduction

Looking into how to distinguish natural and synthetic speech, the most interest-
ing initial observation is that our ears do it with ease. A convincing hypothesis is
that, it is through linguistic context and production constrains such as positional,
contextual and phonological information always present in natural speech. These
are depended on the physical traits of the speaker as well as the learned traits.
In speech processing, these characteristics are broadly called prosody. Common
parameters used are pitch, duration and energy dynamic.

5.2 Fujisaki Model

The fundamental frequency (F0) contour, conveys a lot of information about the
linguistic, para-linguistic and non-linguistic information in speech signal. The
frequency of vibration of the vocal cords mainly through various intrinsic and
extrinsic laryngeal muscles, accounts for the fluctuations in the F0. The slow
changes(global components) in the F0 contour conveys the linguistic information
on the syntactic structure, while information on the word accent/syllable tone is
expressed by relatively rapid changes (local components) of the F0 contour. Fu-
jisaki in his paper elaborately explained the role of cryconoid muscles and how its
rotational and translational motion is responsible for accent and phrase component
of speech respectively [29].

He further states that the command-response model represents the contour of
the logarithm of fundamental frequency, i.e., ln F0(t), as the sum of phrase com-
ponents, accent/tone components, and a speaker dependent baseline level ln Fb.

Thus the F0 contour as a function of time can be expressed by the following
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Figure 5.1: A command-response model for the process of F0 contour generation.
Adapted from [29]

equations:

ln F0(t) = ln Fb(t) + ΣI
i=l ApiGp(t− T0i) + ΣJ

j=l[At1jGt(t− T1i)− Gt(t− T2i)

+At2jGt(t− T2i)− Gt(t− T3i)],
(5.1)

where

Gp(t) =

[
α2t exp(−αt) t ≥ 0,

0 t < 0

]
, (5.2)

Gt(t) =

[
min[1− (1 + β1t) exp(−β1t), γ1], t ≥ 0,

0, t < 0

]
(5.3)

(for positive tone commands),

Gt(t) =

[
min[1− (1 + β2t) exp(−β2t), γ2], t ≥ 0,

0, t < 0

]
(5.4)

(for negative tone commands),

Gp(t) represents the impulse response function of the phrase control mecha-
nism and Gt(t) represents the step response function of the tone control mecha-
nism. The symbols in equation indicate,
Fb-baseline value of fundamental frequency
I-number of phrase commands
J-number of syllables
Api-magnitude of the ith phrase command

26



At1j-amplitude of the first command in the jth syllable
At2j-amplitude of the second command in the jth syllable
T0i-timing of the ith phrase command
T1j-onset of the first command in the jth syllable
T2j-end of the first command (and onset of the second command if the second
command exists) in the jth syllable
T3j-end of the second command if the second command exists in the jth syllable
α- natural angular frequency of phrase control mechanism, set empirically at 3/s
β- natural angular frequency of tone control mechanism, set empirically at 20/s
γ- relative ceiling level of tone components, set empirically at 0.9

5.3 Algorithm and Experimental Results

Its seen that the pitch contour of a speech signal can be decomposed into the slow
varying phrase, fast varying accent component and constant speaker-dependent
parameter. Since each of these capture different prosodic aspects of a signal, Fu-
jisaki model parameter extraction could prove to be a promising method to un-
derstand prosodic aspects of natural speech. The TTS systems used in the study
uses F0, pitch etc. to capture prosody during synthesis. An analysis of the hence
produced artificial speech in comparison with natural speech is done here. Figure
5.2 below shows algorithm used in extraction of phrase and accent components.

Figure 5.2: Algorithm for detection of phrase components

The extraction of F0 contour was done using autocorrelation method and the
cut off frequency for low pass filter was found from the spectrum of the con-
tour. The F0 contour, and corresponding low-pass component (LPC) and high
pass component (HPC), representing phrase and accent respectively, obtained for
natural, HMM-based and USS-based syntheticspeech are shown in figure 5.3

The negative peaks in the LPC corresponds to a phrase component. Three ob-
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(a) Speech signal

(b) Fujisaki model parameters for natural speech

(c) Fujisaki model parameters for HTS-based synthetic speech

(d) Fujisaki model parameters for USS-based synthetic speech

Figure 5.3: Blue dashed lines- F0 contour, red dotted line-LPC and black dotted
line-HPC. In each figure, the x-axis shows time in ms and y-axis the magnitude.

servable parameters are the accent components, number of phrase components
and the value of Fb. Figure 5.4 shows the distribution of number of phrase com-
ponents and the value of Fb for 50 speech samples each of natural, USS-basd and
HTS-based speech. The average value of number of phrase components of both
type of synthetic speech are comparable. Natural speech has slightly higher mean
of 4.4. The USS speech has distributed values and hence higher variance.

This is different from experiments conducted earlier which has shown close-
ness of USS-based synthetic speech to natural speech. Further the mean of speaker
dependent factor Fb is highest for USS-based speech.This can be accounted for by
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(a) Histogram of number of phrase components for male voice.

(b) Histogram of number of phrase components for female voice.

(c) Histogram of Fb for male voice.

(d) Histogram of Fb for female voice.

Figure 5.4: In each case the parameter value and corresponding frequency is plot-
ted. The first histogram corresponds to natural speech, then HMM-based speech
and that corresponding to USS-based speech is the right most. ’sd’ refers to the
standard deviation of the data.
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the fact that phrase occurs additionally at the concatenation points. However, due
to the constrain added in counting the phrase components, that distance between
adjacent components should be greater that pitch period, this effect is nullified.

5.4 Chapter Summary

Prosody is one of the most obvious factor that distinguishes natural speech for
human ear. The human speech depends also on many psychological and emo-
tional factors of the speaker. Fujisaki model is a widely acclaimed model for un-
derstanding prosody. Since the model incorporate the physiological aspects of
the production mechanism, it provides a very detailed analysis. Because of this
reason, the implications of the results obtained here are far reaching though the
study conducted is very much confined to the problem of distinction. It is noted
that the speaker-dependent characters of prosody, does not act as a robust method
and further breaking down of different prosodic constrains is required for use of
Fujisaki model parameters in real-life applications.
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CHAPTER 6

Summary and Conclusions

Different features discussed in the study, potentially create flexibility in the analy-
sis of natural speech and provides a rich variety of behaviours that can be utilized
for more versatile performance. The results obtained also provides an evaluation
of the TTS systems used in the study. It is seen that phase-based features are not
captured in parametric modelling. The algorithm proposed using modified group
delay is an improvement over the existing RPS based method in the sense that the
computation is simpler. Though the method does not guarantee to work for USS
speech or in that case any concatenated speech, the classification using MODGDF
features is not seen to increase the false acceptance rate (FAR).

Further the initial assumption of chaotic nature of speech is validated. The
positive LE indicates chaotic nature of the studied vowels in Gujarati language.
Furthermore, the research illustrates the accountability of LE for distinction of
synthetic and natural speech. Though the extraction of feature is at phoneme-level
and the results are dependent on the phoneme used, with present day algorithms
for phoneme extraction, LE would prove to improve the performance of ASV sys-
tems. The study needs to be extended to other phonemes and by incorporating
LE as a feature in ASV system; it may be made robust to impostor attack using
synthetic speech.

Final chapter of the thesis discusses prosodic aspects of the problem. Using Fu-
jisaki model for parameter extraction, it is observed that though the TTS systems
do not explicitly use these parameters, use of f0 and pitch does capture aspects
such as speaker information and high frequency components corresponding to
accent. Unlike the observation for other feature, USS-based synthetic speech is
seen to be more closer to HTS-based synthetic speech for the analysed prosodic
aspects.

The study presented here is aimed at particular application of distinction of
synthetic and natural speech in ASV systems. Additionally, exploring different
aspects of speech signals has helped in understanding speech signal better. TTS
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systems often looks at the signal production from the aspect of hearing. However
with the computational ability present today, finer details of the natural system of
speech production can be studied in greater depths.

6.1 Future Work

1. An appropriate extension to the work presented in this thesis is implement-
ing the proposed features on ASV systems. This would provide an evalua-
tion of the robustness of the features proposed. Further, LE and MODGDF
can be used to improve the TTS systems. Chaotic and prosodic features
could be exploited in further understanding of natural speech.

2. The study has been carried out in low resource language of Gujarati. The
results obtained can be verified for other Indian languages. In the present
day context where multilingual processing is widely discussed and speech-
based application are fast improving, the natural phenomenon of speech
production and speech signal, still holds many aspects to be explored.
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CHAPTER A

Hidden Markov Model(HMM)-based Speech
Synthesis

Rather than problem of converting parameters into speech, the limiting factor
in producing high quality speech is picking the right parameter for a synthesis
specification. Hidden Markov Model(HMM) synthesis uses statistical machine
learning techniques for this purpose. This has the advantage over synthesis by
concatenation that the memory required for storing data is less and that modi-
fication of the models is possible. To quote Simon King, "No-one would claim
that the HMM is a true model of speech. But the availability of effective and
efficient learning algorithms (Expectation-Maximisation), automatic methods for
model complexity control (parameter tying) and computationally efficient search
algorithms (Viterbi search) make the HMM a powerful model." [11].

HMM is a finite-state machine which generates a sequence of discrete-time
observations. At each time unit, the HMM changes its state depending on a state
transition probability, and then generates observational data in accordance with
an output probability distribution of the current state [30].A number of represen-
tations can be used as observations; a common set up is to use MFCCs, and F0 and
their delta values, and perhaps additional information about the source. HMM
with self state transition is simplistic and a better model of duration is required
for high-quality speech synthesis. Once an explicit duration model is added to the
HMM, we would only have a semi-Markov-transitions between states. Hence, we
most often really mean HSMM speech synthesis [3].

The training phase feature vectors corresponding to different observations is
defined and a separate model is trained for each unique feature combination and
decision tree clustering is used to merge parameters for different states. The
HMM is the concatenation of the models corresponding to the full context-label
sequence, which has been predicted from text by the front end. Choice of dura-
tion model determines how many frames will be generated from each state in the
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model.
In the synthesis phase, the input text is analyzed to produce a sequence of full

context labels. The sequence of models corresponding to this sequence of labels
is then joined together into a single long chain of states. From this model, the
linguistic parameters are generated and these are used to drive the output stage
to produce a speech waveform. Generating parameters from the model is based
on the principal of maximum likelihood. An example is the naive method as de-
scribed in [11]. This method considers only the static parameters and generates
the most likely observation from each state which is the mean of the Gaussian in
that state. This would give piecewise constant parameter trajectories, that change
value abruptly at each state transition and so this will not sound natural when
used. This problem is solved by the MLPG algorithm [31] which also consid-
ers the speed with which parameters change value. MLPG finds the most likely
sequence of generated parameters, given the distributions for different parame-
ters.A number of refinements to the basic HMM technique have been proposed,
including more realistic duration modelling and accounting for global variance.

The HMM speech used in the study is from Hidden Markov Model Toolkit
(HTK) developed by the Machine Intelligence Laboratory of the Cambridge Uni-
versity Engineering Department. The system was trained using 5 hour duration
studio recorded voice in Gujarati language sampled at 16KHz.
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CHAPTER B

Unit Selection-based Speech Synthesis

In this technique, synthetic speech is produced by concatenating the waveforms
of units selected from large, single-speaker speech databases. The primary moti-
vation for the use of large databases is that with a large number of units available
with varied prosodic and spectral characteristics it should be possible to synthe-
size more natural-sounding speech than can be produced with a small set of con-
trolled units [5].

The first stage of USS is creating a unit inventory. Choice of units could be,
phoneme, diphone, syllable or their combinations. For instance, if the unit used
is diphones, the set of all different diphones in the training data is acquired. Each
recorded database is segmented into some or all units.

Typically the division into segments is done using speech recogniser with
manual correction afterwards using visual representations such as waveform and
spectrogram. An index of the units in the speech database is then created based
on the segmentation and acoustic parameters like the fundamental frequency, du-
ration, position in the syllable and neighbouring phones . Figure

After training the system, the desired target utterance is created by deter-
mining the best chain of candidate units from the database (unit selection).This
is achieved using a weighted decision tree and catalogue that is created during
training of the system. The input to synthesiser is typically text, though this may
be augmented with structural and discourse information. In the first stage of
synthesiser, the input is transformed into a string of phonemes or syllables de-
pending on the text input, and annotate it with prosodic features (pitch, dura-
tion and power) which specify the desired speech output.the pitch and timing
of each of the unit is modified to match the prosodic part of the specification.
Some popular techniques for performing this are pitch-synchronous overlap and
add(PSOLA), time-domain PSOLA(TD-PSOLA) [32], [33],residual-excited linear
prediction(RELP) etc. These techniques, isolate the individual pitch periods of
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samples from training, modify them and resynthesise the waveform correspond-
ing to input text.

With present day quality training data the key aspects for quality synthesis
is ensuring continuity of acoustics features(spectral envelope, amplitude, funda-
mental frequency, speaking rate ) at concatenation points without degrading the
source and vocabulary independent synthesis with phone or syllable-like units.
The USS synthesiser used in the entire study is the Festival system designed by
Carnegie Mellon University’s speech group trained using studio recorded speech
for Gujarati language.
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